Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Ann Biomed Eng ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459195

ABSTRACT

SARS-CoV-2 has rampantly spread around the globe and continues to cause unprecedented loss through ongoing waves of (re)infection. Increasing our understanding of the protection against infection with SARS-CoV-2 is critical to ending the pandemic. Serological assays have been widely used to assess immune responses, but secretory antibodies, the essential first line of defense, have been studied to only a limited extent. Of particular interest and importance are neutralizing antibodies, which block the binding of the spike protein of SARS-CoV-2 to the human receptor angiotensin-converting enzyme-2 (ACE2) and thus are essential for immune defense. Here, we employed Microfluidic Diffusional Sizing (MDS), an immobilization-free technology, to characterize neutralizing antibody affinity to SARS-CoV-2 spike receptor-binding domain (RBD) and spike trimer in saliva. Affinity measurement was obtained through a contrived sample and buffer using recombinant SARS-CoV-2 RBD and monoclonal antibody. Limited saliva samples demonstrated that MDS applies to saliva neutralizing antibody measurement. The ability to disrupt a complex of ACE2-Fc and spike trimer is shown. Using a quantitative assay on the patient sample, we determined the affinity and binding site concentration of the neutralizing antibodies.

2.
Front Public Health ; 11: 1168551, 2023.
Article in English | MEDLINE | ID: mdl-37727605

ABSTRACT

Standard multiplex RT-qPCR diagnostic tests use nasopharyngeal swabs to simultaneously detect a variety of infections, but commercially available kits can be expensive and have limited throughput. Previously, we clinically validated a saliva-based RT-qPCR diagnostic test for SARS-CoV-2 to provide low-cost testing with high throughput and low turnaround time on a university campus. Here, we developed a respiratory diagnostic panel to detect SARS-CoV-2, influenza A and B within a single saliva sample. When compared to clinical results, our assay demonstrated 93.5% accuracy for influenza A samples (43/46 concordant results) with no effect on SARS-CoV-2 accuracy or limit of detection. In addition, our assay can detect simulated coinfections at varying virus concentrations generated from synthetic RNA controls. We also confirmed the stability of influenza A in saliva at room temperature for up to 5 days. The cost of the assay is lower than standard nasopharyngeal swab respiratory panel tests as saliva collection does not require specialized swabs or trained clinical personnel. By repurposing the lab infrastructure developed for the COVID-19 pandemic, our multiplex assay can be used to provide expanded access to respiratory disease diagnostics, especially for community, school, or university testing applications where saliva testing was effectively utilized during the COVID-19 pandemic.


Subject(s)
COVID-19 , Communicable Diseases , Influenza, Human , Humans , SARS-CoV-2 , Universities , COVID-19/diagnosis , COVID-19/epidemiology , Pandemics
3.
Microbiol Spectr ; 10(3): e0079722, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35546574

ABSTRACT

SARS-CoV-2 variants of concern (VOCs) continue to pose a public health threat which necessitates a real-time monitoring strategy to complement whole genome sequencing. Thus, we investigated the efficacy of competitive probe RT-qPCR assays for six mutation sites identified in SARS-CoV-2 VOCs and, after validating the assays with synthetic RNA, performed these assays on positive saliva samples. When compared with whole genome sequence results, the SΔ69-70 and ORF1aΔ3675-3677 assays demonstrated 93.60 and 68.00% accuracy, respectively. The SNP assays (K417T, E484K, E484Q, L452R) demonstrated 99.20, 96.40, 99.60, and 96.80% accuracies, respectively. Lastly, we screened 345 positive saliva samples from 7 to 22 December 2021 using Omicron-specific mutation assays and were able to quickly identify rapid spread of Omicron in Upstate South Carolina. Our workflow demonstrates a novel approach for low-cost, real-time population screening of VOCs. IMPORTANCE SARS-CoV-2 variants of concern and their many sublineages can be characterized by mutations present within their genetic sequences. These mutations can provide selective advantages such as increased transmissibility and antibody evasion, which influences public health recommendations such as mask mandates, quarantine requirements, and treatment regimens. Our RT-qPCR workflow allows for strain identification of SARS-CoV-2 positive saliva samples by targeting common mutation sites shared between variants of concern and detecting single nucleotides present at the targeted location. This differential diagnostic system can quickly and effectively identify a wide array of SARS-CoV-2 strains, which can provide more informed public health surveillance strategies in the future.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Mutation , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva
4.
Fungal Genet Biol ; 160: 103697, 2022 05.
Article in English | MEDLINE | ID: mdl-35472450

ABSTRACT

Cryptococcus neoformans, a basidiomycete yeast, causes lethal meningitis in immunocompromised individuals. The ability of C. neoformans to proliferate at 37°C is essential for virulence. We identified anillin-like protein, CnBud4, as essential for proliferation of C. neoformans at 37°C and for virulence in a heterologous host Galleria mellonella at 25°C. C. neoformans cells lacking CnBud4 were inviable at 25°C in the absence of active calcineurin and were hypersensitive to membrane stress and an anti-fungal agent fluconazole, phenotypes previously described for C. neoformans mutants lacking septins. CnBud4 localized to the mother-bud neck during cytokinesis in a septin-dependent manner. In the absence of CnBud4, septin complex failed to transition from a collar-like single ring to the double ring during cytokinesis. In an ascomycete yeast, Saccharomyces cerevisiae, the anillin-like homologue ScBud4 participates in the organization of the septin ring at the mother-bud neck and plays an important role in specifying location for new bud emergence, known as axial budding pattern. In contrast to their role in S. cerevisiae, neither septins nor CnBud4 were needed to direct the position of the new bud in C. neoformans, suggesting that this function is not conserved in basidiomycetous yeasts. Our data suggest that the requirement of CnBud4 for growth at 37°C and pathogenicity in C. neoformans is based on its conserved role in septin complex organization.


Subject(s)
Body Temperature , Contractile Proteins , Cryptococcus neoformans , Cryptococcosis/microbiology , Cryptococcus neoformans/growth & development , Cryptococcus neoformans/pathogenicity , Host Microbial Interactions , Humans , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins , Septins/metabolism
5.
medRxiv ; 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35262087

ABSTRACT

SARS-CoV-2 variants of concern (VOCs) continue to pose a public health threat which necessitates a real-time monitoring strategy to compliment whole genome sequencing. Thus, we investigated the efficacy of competitive probe RT-qPCR assays for six mutation sites identified in SARS-CoV-2 VOCs and, after validating the assays with synthetic RNA, performed these assays on positive saliva samples. When compared with whole genome sequence results, the SΔ69-70 and ORF1aΔ3675-3677 assays demonstrated 93.60% and 68.00% accuracy, respectively. The SNP assays (K417T, E484K, E484Q, L452R) demonstrated 99.20%, 96.40%, 99.60%, and 96.80% accuracies, respectively. Lastly, we screened 345 positive saliva samples from December 7-22, 2021 using Omicron-specific mutation assays and were able to quickly identify rapid spread of Omicron in Upstate South Carolina. Our workflow demonstrates a novel approach for low-cost, real-time population screening of VOCs. Importance: SARS-CoV-2 variants of concern and their many sublineages can be characterized by mutations present within their genetic sequences. These mutations can provide selective advantages such as increased transmissibility and antibody evasion, which influences public health recommendations such as mask mandates, quarantine requirements, and treatment regimens. Our real-time RT-qPCR workflow allows for strain identification of SARS-CoV-2 positive saliva samples by targeting common mutation sites shared between VOCs and detecting single nucleotides present at the targeted location. This differential diagnostic system can quickly and effectively identify a wide array of SARS-CoV-2 strains, which can provide more informed public health surveillance strategies in the future.

6.
Front Plant Sci ; 12: 775296, 2021.
Article in English | MEDLINE | ID: mdl-34691134

ABSTRACT

[This corrects the article DOI: 10.3389/fpls.2020.00122.].

7.
Front Plant Sci ; 11: 122, 2020.
Article in English | MEDLINE | ID: mdl-32161608

ABSTRACT

Scaffold proteins form critical biomatrices that support cell adhesion and proliferation for regenerative medicine and drug screening. The increasing demand for such applications urges solutions for cost effective and sustainable supplies of hypoallergenic and biocompatible scaffold proteins. Here, we summarize recent efforts in obtaining plant-derived biosynthetic spider silk analogue and the extracellular matrix protein, collagen. Both proteins are composed of a large number of tandem block repeats, which makes production in bacterial hosts challenging. Furthermore, post-translational modification of collagen is essential for its function which requires co-transformation of multiple copies of human prolyl 4-hydroxylase. We discuss our perspectives on how the GAANTRY system could potentially assist the production of native-sized spider dragline silk proteins and prolyl hydroxylated collagen. The potential of recombinant scaffold proteins in drug delivery and drug discovery is also addressed.

8.
PLoS One ; 13(12): e0208471, 2018.
Article in English | MEDLINE | ID: mdl-30532246

ABSTRACT

Pathogenic basidiomycetous yeast, Cryptococcus neoformans, causes fatal meningitis in immunocompromised individuals. Fluconazole (FLC) is a fungistatic drug commonly administered to treat cryptococcosis. Unfortunately, FLC-resistant strains characterized by various degree of chromosomal instability were isolated from clinical patients. Importantly, the underlying mechanisms that lead to chromosomal instability in FLC-treated C. neoformans remain elusive. Previous studies in fungal and mammalian cells link chromosomal instability to the reactive oxygen species (ROS). This study provides the evidence that exposure of C. neoformans to FLC induces accumulation of intracellular ROS, which correlates with plasma membrane damage. FLC caused transcription changes of oxidative stress related genes encoding superoxide dismutase (SOD1), catalase (CAT3), and thioredoxin reductase (TRR1). Strikingly, FLC contributed to an increase of the DNA damage in vitro, when complexed with iron or copper in the presence of hydrogen peroxide. Strains with isogenic deletion of copper response protein metallothionein were more susceptible to FLC. Addition of ascorbic acid (AA), an anti-oxidant at 10 mM, reduced the inhibitory effects of FLC. Consistent with potential effects of FLC on DNA integrity and chromosomal segregation, FLC treatment led to elevated transcription of RAD54 and repression of cohesin-encoding gene SCC1. We propose that FLC forms complexes with metals and contributes to elevated ROS, which may lead to chromosomal instability in C. neoformans.


Subject(s)
Cryptococcus neoformans/drug effects , Cryptococcus neoformans/metabolism , Fluconazole/pharmacology , Reactive Oxygen Species/metabolism , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Cryptococcus neoformans/genetics , DNA Damage , Drug Resistance, Fungal/drug effects , Fluconazole/therapeutic use , Gene Expression Regulation, Fungal/drug effects , In Vitro Techniques , Microbial Sensitivity Tests , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Oxidative Stress/genetics , Up-Regulation/drug effects
9.
Phytopathology ; 108(11): 1263-1275, 2018 11.
Article in English | MEDLINE | ID: mdl-29792573

ABSTRACT

Anthracnose disease, caused by Colletotrichum truncatum, affects marketable yield during preharvest production and postharvest storage of fruits and vegetables worldwide. Demethylation inhibitor (DMI) fungicides are among the very few chemical classes of single-site mode of action fungicides that are effective in controlling anthracnose disease. However, some species are inherently resistant to DMIs and more information is needed to understand this phenomenon. Isolates of C. truncatum were collected from the United States and China from peach, soybean, citrus, and begonia and sensitivity to six DMIs (difenoconazole, propiconazole, metconazole, tebuconazole, flutriafol, and fenbuconazole) was determined. Compared with DMI sensitive isolates of C. fructicola, C. siamense, and C. fioriniae (EC50 value ranging from 0.03 to 16.2 µg/ml to six DMIs), C. truncatum and C. nymphaeae were resistant to flutriafol and fenbuconazole (with EC50 values of more 50 µg/ml). Moreover, C. truncatum was resistant to tebuconazole and metconazole (with resistance factors of 27.4 and 96.0) and displayed reduced sensitivity to difenoconazole and propiconazole (with resistance factors of 5.1 and 5.2). Analysis of the Colletotrichum spp. genome revealed two potential DMI targets, CYP51A and CYP51B, that putatively encode P450 sterol 14α-demethylases. Both genes were identified and sequenced from C. truncatum and other species and no correlation between CYP51 gene expression levels and fungicide sensitivity was found. Four amino acid variations L208Y, H238R, S302A, and I366L in CYP51A, and three variations H373 N, M376L, and S511T in CYP51B correlated with the DMI resistance phenotype. CYP51A structure model analysis suggested the four alterations may reduce azole affinity. Likewise, CYP51B structure analysis suggested the H373 N and M376L variants may change the conformation of the DMI binding pocket, thereby causing differential sensitivity to DMI fungicides in C. truncatum.


Subject(s)
14-alpha Demethylase Inhibitors/pharmacology , Colletotrichum/enzymology , Drug Resistance, Fungal , Genetic Variation , Plant Diseases/microbiology , Sterol 14-Demethylase/genetics , Amino Acid Sequence , Azoles/pharmacology , Begoniaceae/microbiology , Citrus/microbiology , Colletotrichum/drug effects , Colletotrichum/genetics , Fungal Proteins/genetics , Fungicides, Industrial/pharmacology , Models, Molecular , Phylogeny , Prunus persica/microbiology , Sequence Alignment , /microbiology
10.
Mater Sci Eng C Mater Biol Appl ; 81: 104-112, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28887952

ABSTRACT

A proposed source of stem cells for nerve regeneration are dental pulp stem cells (DPSCs), based on their close embryonic origin to neurons and the ease with which DPSCs can be obtained from a donor. This study evaluated the response of human DPSCs to spider dragline silk fibers, a potential substrate material for tissue regeneration. The DPSCs' morphology and spread pattern were characterized after these cells were plated onto Nephila clavipes dragline fibers in media. In addition, the responses of two other well established cell lines, osteoblasts (7F2s), and fibroblasts (3T3s), were also studied under identical conditions. The inclusion of 3T3s and 7F2s in this study allowed for both direct comparisons to prior published work and a qualitative comparison to the morphology of the DPSCs. After twelve days, the DPSCs exhibited greater relative alignment and adherence to the spider dragline fibers than the 3T3s and 7F2s. The impact of a common sterilization method (ultraviolet light) on the spider dragline fiber surface and subsequent cell response to this modified surface was also characterized. Exposure of the silk to ultraviolet light did not have a measureable effect on cell alignment, but it did eliminate bacterial growth and changed fiber surface roughness. Spiders' exposure to stressful environments did not have an effect on silk to impair cell alignment or adhesion. Synthetic recombinant protein silk did not act as a substrate for cell adhesion or alignment but hydrogels with similar composition supported cell attachment, growth and proliferation. In all cases, natural drawn spider silk acted as an effective substrate for cellular adhesion and alignment of DPSCs and could be used in neural differentiation applications.


Subject(s)
Dental Pulp , Animals , Silk , Spiders , Stem Cells , Tissue Engineering
11.
PLoS One ; 12(5): e0178201, 2017.
Article in English | MEDLINE | ID: mdl-28542539

ABSTRACT

Spider major ampullate silk fibers have been shown to display a unique combination of relatively high fracture strength and toughness compared to other fibers and show potential for tissue engineering scaffolds. While it is not possible to mass produce native spider silks, the potential ability to produce fibers from recombinant spider silk fibers could allow for an increased innovation rate within tissue engineering and regenerative medicine. In this pilot study, we improved upon a prior fabrication route by both changing the expression host and additives to the fiber pulling precursor solution to improve the performance of fibers. The new expression host for producing spidroin protein mimics, protozoan parasite Leishmania tarentolae, has numerous advantages including a relatively low cost of culture, rapid growth rate and a tractable secretion pathway. Tensile testing of hand pulled fibers produced from these spidroin-like proteins demonstrated that additives could significantly modify the fiber's mechanical and/or antimicrobial properties. Cross-linking the proteins with glutaraldehyde before fiber pulling resulted in a relative increase in tensile strength and decrease in ductility. The addition of ampicillin into the spinning solution resulted in the fibers being able to inhibit bacterial growth.


Subject(s)
Biomimetic Materials , Fibroins/biosynthesis , Leishmania/metabolism , Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Biomimetic Materials/pharmacology , Bioreactors , Blotting, Western , Cross-Linking Reagents/chemistry , Escherichia coli , Fibroins/chemistry , Fibroins/pharmacology , Fibroins/ultrastructure , Glutaral/chemistry , Leishmania/genetics , Manufacturing Industry , Materials Testing , Microscopy, Electron, Scanning , Pilot Projects , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Recombinant Proteins/ultrastructure , Solutions , Tensile Strength
12.
Biomacromolecules ; 18(3): 740-746, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28196414

ABSTRACT

Spider dragline silk is a proteinaceous material that combines superior toughness and biocompatibility, which makes it a promising biomaterial. The distinct protein structure and the fiber formation process contribute to the superior toughness of dragline silk. Previously, we have produced recombinant spider silk-like proteins in transgenic tobacco that are readily purified from plant extracts. The plant-derived spidroin-like proteins consisted of native major ampullate spidroin 1 or spidroin 2 N- and C-termini flanking 8, 16, or 32 copies of their respective consensus block repeats (mini-spidroins). Here, we present the generation of fibers from mini-spidroins (rMaSp1R8 and rMaSp2R8) by polyelectrolyte complex formation using an anionic polyelectrolyte, gellan gum. Mini-spidroins, when treated with acetic acid and cross-linked by glutaraldehyde, formed a thin film at the interface when overlaid with a gellan gum solution. Immediate pulling of the film resulted in autofluorescent fibrous materials from either mini-spidroin alone or a combination of rMaSp1R8 and rMaSp2R8 (70:30). Addition of chitosan to the mini-spidroin solutions permitted continuous fiber production until the spinning dope supply was exhausted. When air-dried as-spun fibers were rehydrated and stretched in water, the fiber diameter decreased and the overall toughness improved. This study showed that spider silk-like fibers can be produced in large quantities through charge attraction that assembles chitosan, mini-spidroins, and gellan gum into fibrous complexes. We speculate that the spider silk self-assembly process in the duct may involve attraction of variously charged chitinous polymers, spidroins, and glycoproteins.


Subject(s)
Fibroins/chemistry , Plant Proteins/chemistry , Polyelectrolytes/chemical synthesis , Animals , Biocompatible Materials/chemical synthesis , Chitosan/chemistry , Polysaccharides, Bacterial/chemistry , Recombinant Proteins/chemistry , Spiders , /chemistry
13.
Plant Dis ; 101(9): 1601-1605, 2017 Sep.
Article in English | MEDLINE | ID: mdl-30677326

ABSTRACT

Peach skin streaking is a previously undescribed skin discoloration affecting red-blush peach cultivars in Georgia and South Carolina. Streaked peach fruit have been observed in the field close to harvest. The cause of streaking is still unknown but one hypothesis is that atmospheric pollutants may be involved. The goal of this study was to establish proof of concept that commonly found air pollutants can produce streaks on peach skin similar to those observed in commercial orchards and investigate the susceptibility of peach fruit during maturation. Common reactive byproducts of atmospheric pollutants, including sulfuric acid (H2SO4), nitric acid (HNO3), and hypochlorite acid (HCl), at concentrations up to 10 µg/ml did not produce streaking under field conditions when applied at week 3, 2, and 1 prior to commercial harvest. However, sodium hypochlorite (NaClO) in the form of Clorox solution and chlorine dioxide (ClO2) at 100 µg/ml generated from the Aquamira water treatment solution produced streaking symptoms on detached peach fruit under controlled conditions and in the field. Peach fruit were most susceptible to streaking closest to harvest, suggesting that NaClO and ClO2 interfere with pigment formation.


Subject(s)
Air Pollutants/pharmacology , Fruit , Prunus persica , Chlorine Compounds/pharmacology , Fruit/drug effects , Georgia , Oxides/pharmacology , Pigmentation/drug effects , Sodium Hypochlorite/pharmacology , South Carolina
14.
Transgenic Res ; 25(4): 517-26, 2016 08.
Article in English | MEDLINE | ID: mdl-27026165

ABSTRACT

The high tensile strength and biocompatibility of spider dragline silk makes it a desirable material in many engineering and tissue regeneration applications. Here, we present the feasibility to produce recombinant proteins in transgenic tobacco Nicotiana tabacum with sequences representing spider silk protein building blocks . Recombinant mini-spidroins contain native N- and C-terminal domains of major ampullate spidroin 1 (rMaSp1) or rMaSp2 flanking an abbreviated number (8, 16 or 32) of consensus repeat domains. Two different expression plasmid vectors were tested and a downstream chitin binding domain and self-cleavable intein were included to facilitate protein purification. We confirmed gene insertion and RNA transcription by PCR and reverse-transcriptase PCR, respectively. Mini-spidroin production was detected by N-terminus specific antibodies. Purification of mini-spidroins was performed through chitin affinity chromatography and subsequent intein activation with reducing reagent. Mini-spidroins, when dialyzed and freeze-dried, formed viscous gelatin-like fluids.


Subject(s)
Fibroins/metabolism , /metabolism , Chromatography, Affinity , Fibroins/genetics , Fibroins/isolation & purification , Freeze Drying , Inteins/genetics , Plants, Genetically Modified , Protein Engineering/methods , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
15.
J Chromatogr A ; 1133(1-2): 254-8, 2006 Nov 10.
Article in English | MEDLINE | ID: mdl-16952365

ABSTRACT

Since the isolation of artemisinin 32 years ago, it has been analyzed by different chromatographic techniques. This work compared the analysis of artemisinin from crude plant samples by GC with flame ionization detection (GC-FID) and HPLC with evaporative light scattering detector (HPLC-ELSD). Data is also presented indicating that GC is suitable for the quantification of two of artemisinin precursors (arteannuin B and artemisinic acid) if a mass spectrometer is available. GC-FID and HPLC-ELSD were chosen because of their low cost compared to other detection methods, their ease of operation compared to HPLC with electrochemical detection, and because neither require artemisinin derivatization. Both GC-FID and HPLC-ELSD provided sensitive (ng level) and reproducible results for the analysis of artemisinin from field plants, with a correlation coefficient of r(2)=0.86 between the two methods. Both methods could be easily adapted to the analysis of pharmaceutical-grade artemisinin.


Subject(s)
Artemisia annua/chemistry , Artemisinins/analysis , Chromatography, Gas/methods , Chromatography, High Pressure Liquid/methods , Flame Ionization/methods , Sesquiterpenes/analysis , Artemisinins/chemistry , Molecular Structure , Reproducibility of Results , Sesquiterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...